Everything New We Just Learned About The Collaborative Combat Aircraft Program

jor new details about the U.S. Air Force's Collaborative Combat Aircraft program emerged at the Air & Space Forces Association's recent annual Warfare Symposium. This includes a clearer picture of the effort's autonomy goals, aggressive production plans, and future operational impacts. Though questions remain about the capabilities and costs of these future uncrewed aircraft, the CCA program looks set to have a number of disruptive impacts that could fundamentally reshape the Air Force.

As it stands now, the Air Force is planning to acquire at least 1,000 Collaborative Combat Aircraft (CCA) drones, and potentially more, as part of an initial tranche known currently as Increment One. Five companies – Boeing, General Atomics, Lockheed Martin, Northrop Grumman, and Anduril – are currently working on Increment One air vehicle designs. Dozens of additional firms are supporting the program through the development of autonomous technologies, sensors and other mission systems, command and control capabilities, and more. A down-select on the air vehicle side of the first increment, from the initial five contractors down to two or three, is expected later this year. The goal is to have a CCA design actually in production by 2028.

Increment One CCAs are expected, at least initially, to operate very closely with stealthy crewed combat jets, including a new sixth-generation design now under development as part of the Air Force's larger Next Generation Air Dominance (NGAD) initiative, as well as certain F-35As. CCAs could be partnered with other crewed aircraft and operate more independently, in the future.

The Air Force also expects formal work on a second batch of CCA drones, known as Increment Two, to kick off in the 2025 Fiscal Year. This second phase of the program, the core requirements for which are still largely undefined, could include foreign participation. The Air Force is already collaborating actively with the U.S. Navy and Marine Corps on various aspects of the CCA program and relevant technologies, including the ability to exchange control of the drones seamlessly between services during future operations. There are plans to bring U.S. Special Operations Command (SOCOM) into this inter-service partnership later this year, as well. You can read more about all of this here.

Capabilities And Cost

The Air Force has so far provided limited details about the requirements and cost projections for the Increment One CCAs. From what has been disclosed to date, the service looks to be leaning toward picking a design that will feature less range and higher performance than had originally been expected, that will have a unit price at the top of earlier projected price ranges, as The War Zone has previously explored in detail.

In terms of cost, specifically, Secretary of the Air Force Frank Kendall has said that each of the initial batch of CCAs will cost between one-quarter and one-third of the unit price of an F-35 stealth fighter. This would be between around $20.5 and $27.5 million, based on publicly available information.

"Range and speed is going to size the platform for you. It's physics. ... the size of that platform is going to have a cost associated with it," David Alexander, president of General Atomics Aeronautical Systems, said at a panel discussion at this year's AFA War Symposium on February 13. “But that's not the whole story."

Alexander explained that, at least from General Atomics' perspective, an essential part of the Increment One CCA development process has been to strip out all sorts of things associated with manned operation from the design, both on the aircraft and in terms of support requirements. This, in turn, opens up new trade space for how to meet the Air Force's desired capability requirements, while still keeping costs low.

Robert Winkler, the vice president of Corporate Development and National Security Programs at drone maker Kratos, made similar points while speaking alongside Alexander. Kratos is not among the five companies currently on contract to develop CCA designs under Increment One, but the company is vying to participate in Increment Two.

“What we're missing, though, is controlling the cost. And so if we want to have a reasonably costed aircraft, we can’t go with exquisite sensors. But we want that same capability," Winkler said. "So we have to figure out a way to bring the sensor costs down, maybe give up a little bit of performance, but bring it up from the level that you would get from a completely expandable weapon.”

“We know how to build manned aircraft. And we know how to build unmanned aircraft. We got to make sure that we're building for the right thing," Winkler continued. "So if you tried to build a CCA like a manned aircraft, it's gonna cost like a manned aircraft."

Winkler specifically cited the case of the MQ-25 Stingray carrier-based tanker drone that Boeing is developing for the U.S. Navy as an example of what to avoid, saying that its unit cost is "about eight million dollars less than a KC-46" crewed aerial refueling tanker. The Navy currently projects the average unit for the 76 MQ-25s it plans to buy to be around $150 million, according to the service's budget documents. In its budget request for the 2024 Fiscal Year, the Air Force pegged the unit price of a KC-46A at just over $163 million.

Beyond the design of the Increment One CCAs, new details about the actual degree of autonomy that these drones are expected to have, or lack thereof, emerged last week.

“The hardest part is the autonomy piece. ... the more complex the autonomy that you expect the system and platform increment to perform, the harder it is," Andrew Hunter, assistant secretary of the Air Force for Acquisition, Technology, and Logistics, said at a media roundtable that The War Zone and others attended on the sidelines of the 2024 AFA Warfare Symposium. "I will say we have a high degree of confidence that we can deliver useful autonomy in increment one."

"We would not be proceeding at the pace that we are … if we didn't believe that we would be able to deliver useful autonomy in the same timeframe as we’re fielding that air vehicle," Hunter continued. "But it will be more limited than I think what you'll see down the road. Autonomy will grow … more capable over time.”

The Air Force has also put a heavy emphasis on open architectures and mission systems, which could lead to significant changes to the overall capabilities of the Increment One CCAs as time goes on. The service, in cooperation with industry, has already been making advancements in its ability to rapidly train and retrain autonomous algorithms in entirely digital environments to help speed up the development and implementation of new functionality, as you can learn more about here.

"I think it's really key to moving forward, especially with autonomy and AI [artificial intelligence] that ... we want to bring forward. .... the key to that is going to be open mission systems, open architecture. And that includes command and control. And that also includes the sensor system," General Atomics' Alexander said at the panel discussion last week. "If you bring a new capability on and you have to go through the whole air worthiness cycle every time you go through it, you're gonna fail, but if you can bring new capability and new skills quick, without going through an airworthiness cycle every time, that's when you're going to really grow your autonomy, your AI, over time."

Alexander highlighted that General Atomics has already been doing autonomy and other relevant research and development work using surrogates, including the company's stealth Avenger drones. The Air Force has been working with a number of other contractors in recent years on similar relevant developments through tangential programs like Skyborg, as you can read more about here.

In Alexander's opinion, “we're not that far away from the autonomy of half a dozen or a dozen CCAs going down range first on their own” using mesh networks, “talking to each other” about “who's going to shoot that target" at a rate of "50 times a second."

The General Atomics executive did stress that a human would be in the loop in these contexts for the foreseeable future, but cited demands for higher-level crewed-uncrewed teaming as a major potential stumbling block to implementing autonomous capabilities. He also warned against getting overly “bogged down in the safety process” in autonomy development. The benefits of the ability of highly autonomous uncrewed aircraft to work through heavily-defined decision cycles far faster than human pilots, and to perform tasks within a completely different risk calculus, is something The War Zone has explored in detail in the past.

Whatever the final requirements for the Increment One CCAs in terms of the air vehicle design and their mission systems, including their autonomous capabilities, turn out to be, this can only have an impact on the unit cost of the drones.

“I think we got to be careful with low cost. ... [CCA] needs to be attrition tolerant, attritable … [but] you gotta make sure that you're not producing a lot of something that will fail, because nobody will want that, as well," General Atomics' Alexander said last week. Attritable, a term the Air Force has been trying to move away from, can be very generally defined as a system that is cheap enough that commanders would be willing to lose them in higher-risk scenarios, but would still have relevant capabilities to perform those missions.

"You have to get the reliability up," he added. "And you have to get... preventative maintenance and scheduled maintenance down and out … And so I think we've got to keep an eye on the big picture as far as cost goes. And there's a balance."

At another panel discussion at the AFA Warfare Symposium last week, Air Force Maj. Gen. R. Scott Jobe, director of Force Design, Integration, and Wargaming and deputy chief of Staff for Air Force Futures, pointed out that the service is looking at the CCA cost in ways beyond the individual price of each drone, too.

“The CCA kind of represents a whole lot of different capabilities that you can explore [for] achieving and closing those kill chains … [and] you can potentially do it in a much more cost-effective way [in terms of] cost per effect," Jobe said. “And so then you can have that discussion … on making those trades, trades in airspeed and altitude, … what kinds of avionics or sensors it has on it, or doesn’t… I mean, you could conceivably have a fairly simple flying tracker that fires cruise missiles kind of thing that doesn’t have a whole lot of advanced systems on it.”

He further highlighted how CCAs could lead to different kinds of cost savings because there won't need to be anyone in the cockpit. The Air Force continues to face a serious shortage of pilots despite years of exploring ways to improve the training pipeline and otherwise mitigate this shortfall. As already noted, CCAs will still require some level of human interaction and the Air Force has no plans to stop using crewed aircraft any time soon. At the same time, personnel requirements are expected to be lower for CCAs than they would be for traditional flying units within the Air Force.

At the media roundtable last week, Assistant Secretary of the Air Force Hunter added that there could also potentially be a very different set of requirements overall for the Increment Two CCAs. He further stressed that the process of narrowing down those requirements hasn't even begun. The Air Force has said in the past that future tranches of CCAs could be radically different in both form and function from those acquired in Increment One. The second tranche of CCAs could therefore have substantially different unit prices.

"I think the [cost] spectrum opens up a little bit when we get into increment two," Air Force Brig. Gen. Jason Voorheis, the Air Force's program executive officer for Fighters and Advanced Aircraft, said at a panel talk at the AFA Warfare Symposium last week.

Voorheis also talked about the value of ensuring “these assets have the most flexible and modular characteristics and design” so that they can perform most effectively within larger families of future systems and provide for future adaptability in roles and missions.